
Eur. Phys. J. C 51, 913–918 (2007) THE EUROPEAN
PHYSICAL JOURNAL C

DOI 10.1140/epjc/s10052-007-0332-5

Regular Article – Theoretical Physics

On the violation of the holographic viscosity
versus entropy KSS bound in non-relativistic systems
A. Dobado, F.J. Llanes-Estradaa
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Abstract. A computation of the quotient of shear viscosity and entropy density, or the Kovtun, Son and
Starinets (KSS) number η/s, is performed in the non-relativistic and classical regime, first in chiral pertur-
bation theory, and then in the SO(g+1)/SO(g) non-linear sigma model in the large g limit. Both are field
theories stemming from a renormalizable sigma model, but, in spite of that, we explicitly calculate how one
avoids the KSS bound by increasing the number of degenerate pions sufficiently. However, we argue that
particle production could still keep the validity of the KSS bound in the weak sense. We also show how
a large number of molecular isomers (which we estimate in terms of simple molecular properties) could avoid
the bound in the strong sense. This might be possible with carbon based molecules. We finally argue that
a measurement of η/s in heavy-ion collisions might be turned into an upper bound on the number of hadron
resonances.

PACS. 11.15.Pg; 12.38.Mh; 25.75.q; 51.20.+d

1 Introduction

There is considerable interest in devising or reporting on
fluids with the lowest possible value of the shear viscos-
ity to entropy density ratio, η/s. This ratio, dimension-
less in natural units, and taken at zero chemical potential,
is responsible for the damping of shear waves in a fluid
with the dispersion relation ω+ik2(η/sT ) = 0. A few years
ago, Kovtun, Son and Starinets (KSS) [1] observed that in
field theories that have a gravity dual in higher dimension
through the holographic principle, the ratio could be esti-
mated as a function of the metric coefficients near a “black
brane”:

η

s
= Tf [gαβ]

and to their surprise, several feasible calculations with
simple metrics gαβ consistently yielded the value η/s =
1/(4π). The field theories dual to these gravity configura-
tions are strongly coupled supersymmetric Yang–Mills the-
ories, far removed from our current physical picture of the
world. However, going to common substances whose vis-
cosity and entropy density values are tabulated, one finds
(see Fig. 1) that this ratio is at least an order of magni-
tude larger than 1/(4π). In the spirit of other dimension-
less numbers characterizing fluid mechanics, such as the
Reynolds or the Prandtl number, we can define (now in ar-
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bitrary units) the KSS number as

KSS =
kBη

h̄s
. (1)

Given that no fluid is known to have KSS < 1/(4π), the
authors conjectured that this value is a universal bound
for the ratio (strong bound). Since then, several works
have reported on values for the ratio in the range 0.08–

Fig. 1. η/s for molecular nitrogen and helium gases together
with the bound of Kovtun, Son and Starinets
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0.3 for the quark and gluon liquid produced at RHIC [3],
0.3 for cold, trapped atoms near a Feshbach resonance [4],
and theoretical work has shown that the pion gas in
the aftermath of a heavy-ion collision should respect the
bound [5] (correcting earlier results from [6]), as also
should the nuclear matter formed in possible strange
stars [7].
As was stressed in [2], the KSS bound does not in-

volve the speed of light c and hence is non-trivial when
applied to non-relativistic systems. It is not clear whether
the bound is or is not appropriate for all such systems.
The reason is that one can consider a gas with an in-
creasing number of different species of molecules, so that
the entropy density can be made arbitrary large, thus
evading the bound. However, it can be argued this can-
not happen in any respectable non-relativistic system
coming from a genuine relativistic quantum field theory
with a well defined ultraviolet (UV) completion (weak
sense bound). In this work we will show how the bound
can be violated by the non-relativistic classic limit of
a SO(g+1)/SO(g) non-linear sigma model (NLSM) for
a sufficient large g. As is well known, this Lagrangian
density is the effective field theory of the correspond-
ing linear sigma model (LSM); that is, a renormalizable
field theory (although the loophole of UV completion re-
mains open, since the beta function is positive, one can
call into question the relevance of this issue in the non-
relativistic limit. Further discussion can be found in the
recent paper [8]).
In order to expose the violation, we will first consider

the case of a non-relativistic classical pion gas described by
chiral perturbation theory (χPT) and then we will extend
the result to the SO(g+1)/SO(g) non-linear sigma model
to see how the weak version of the bound can be avoided.
Next we will comment on a possible way out for the KSS
conjecture and finally we examine what one would need to
achieve in molecular physics a system realized in nature vi-
olating the bound. Throughout the paper we distinguish
the “KSS bound” (meaning η/s > 1/(4π) for an arbitrary
system) from the “KSS conjecture” (the actual statement
that this bound could strictly hold for relativistic field the-
ories in some more or less strong form depending on addi-
tional assumptions).

2 The bound applies
for a non-relativistic pion system

As is well known, the low-energy dynamics of pions can be
described by χPT [9, 10]. At the lowest order this amounts
to the NLSM based on the symmetry group SU(2)L×
SU(2)R being spontaneously broken to SU(2)L+R. As
a consequence the fields have as domain the coset manifold
SU(2)L × SU(2)R/SU(2)L+R = SO(4)/SO(3) = S3. This
symmetry scheme is manifest in the Lagrangian for the
pion fields:

Lχ =
1

2
gab∂µπ

a∂µπb+m2f2
√
1−π2/f2 , (2)

where the coset metric is given by

gab = δab+
πaπb

f2−π2
,

with f � 92MeV, m� 138MeV, a, b running from a, b= 1
to a, b= g = 3 and π2 = πaπa. Note that we have added an
explicit symmetry breaking term proportional tom2 to the
NLSM Lagrangian in order to take into account the pion
massm.
From the above Lagrangian it is possible to compute

the elastic scattering amplitude of the pion, which can be
written as Tabcd =A(s, t, u)δabδcd+ . . . , where we have not
explicitly shown the crossing terms. At low energies, which
is the relevant limit for the non-relativistic regime, the
amplitude is given by the Weinberg low energy theorem:
A= (s−m2)/f2.1 The corresponding averaged cross sec-
tion in the non-relativistic limit is

σ =
23m2

384πf4
= πR2 . (3)

As this cross section is energy independent in this non-
relativistic limit we have introduced the effective pion
radius R.
On the other hand the well-known viscosity of a classi-

cal, hard-sphere gas grows moderately for low temperature
as a square root,

η =
5
√
mT

16
√
πR2

(4)

in terms of the hard-sphere radius R and massm. Thus we
can use the above results to compute the viscosity of a non-
relativistic classical gas of pions, which is given by

ηχ =
120π3/2f4

23m3/2

√
T . (5)

The entropy density of a Bose gas with g different com-
ponents is conveniently taken as

s=
g

6π2T 2

∫ ∞

9

p4dp
E−µ

E

eβ(E−µ)

[eβ(E−µ)−1]2
. (6)

Note that we have introduced a chemical potential µ≤m.
Strictly speaking this requires that the number of bosons
(pions in our case) is conserved by the interactions. How-
ever, from the χPT Lagrangian we clearly see that inter-
actions with any even number of pions are allowed. In par-
ticular 2 to 4 pion reactions are present whenever the cen-
ter of mass energy is larger than the four pion threshold lo-
cated at s= 16m2. In spite of that, in the low energy (non-
relativistic) regime we are considering here, these non pion
number conserving processes are completely suppressed,
and thus it is possible to introduce an effective chemical
potential µ associated to pion number. Consequently this

1 In fact, the pion mass m and the pion decay constant f
appearing in this formula are modified by well-known chiral
corrections, but they are not relevant for our discussion here.
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parameter (or equivalently the n number density) can be
arbitrarily chosen for any temperature T by assuming that
the system is surrounded by a particle bath.
Now consider the cold, T �m, classical regime of the

pion gas, where the relativistic fugacity is taken small,
z = eβ(µ−m)� 1. Defining as usual a thermal de Broglie
wavelength,

λ=

√
2π

mT
,

the number density becomes

n=
gz

λ3
, (7)

and the condition of behaving in a classical way, or having
low average occupation number, reads n� g/λ3. Under
this condition, (6) reduces to the formula of Sackur–
Tetrode:

s= n

(
log

g

nλ3
+
5

2

)
, (8)

and the KSS number becomes

ηχ

s
=
240
√
2π3

23

f4

m4
m

T

1

nλ3
(
log g

nλ3
+ 52
) . (9)

It is very easy to see that in the region of validity of
this formula, namely T �m, nλ3� g = 3 and m ∼ f , we
have ηχ/s� 1/(4π). Therefore, the KSS bound applies to
χPT in the classical and non-relativistic limit. This model
corresponds to the low energy limit of quantum chromody-
namics (QCD) with Nf = 2 and Nc = 3. Thus this version
of QCD can be considered as the UV completion of the
NLSM considered here.
One of the most remarkable features of the above for-

mula is of course the g factor in the denominator. For
physical pions in an isospin triplet, this degeneracy is
g = 3. It would appear that increasing the number of fla-
vors in QCD, which implies increasing the number of chi-
ral Goldstone bosons (pions), eventually undermines the
KSS bound according to the above formula. Nevertheless,
it is well known that one cannot increase the flavor num-
ber arbitrarily in QCD without changing the derivative
of the β function, β(g) = −g3(11−2Nf/3)/16π2, so that
the quantum field theory is presumably not well defined.
In addition, the computation that we have done here is
based on the NLSM based on the coset SO(g+1)/SO(g) =
Sg. However, the cosets relevant for low energy QCD are
SU(Nf )L×SU(Nf )R/SU(Nf )L+R. Both families of cosets
meet for g = 3 andNf = 2 but not in the general case. Thus
our computation does not describe low energy QCD for g
different from 3.

3 Violating the KSS bound
in the large g limit

However, the SO(g+1)/SO(g) = Sg NLSM is the effective
theory of the LSM based on the same groups. The LSM is

a renormalizable quantum field theory (QFT) which is well
defined perturbatively, although this maybe is not the case
for some non-perturbative formulations because of the is-
sue of triviality. It seems to be of help to the conjectured
bound that the interaction decreases with the energy scale
(the gas viscosity increases when the entropy also does),
and maybe this is what will be left of the conjecture. This
surely deserves further exploration.
The LSM Lagrangian is

L=
1

2
∂µΦ∂

µΦT −V (Φ)+α
√
gFσ , (10)

where Φ is the SO(g+1) multiplet Φ= (π1, π2, . . . , πg, σ),
and the potential is V (Φ) =−µ2|Φ|2+λ|Φ|4. For appropri-
ate µ2 values the potential produces spontaneous symme-
try breaking from the SO(g+1) symmetry down to SO(g).
As in the NLSM we have added the last term to the La-
grangian in order to break also explicitly the SO(g+1)
symmetry, thus producing a mass m for the Goldstone
bosons. Defining the vacuum as Φvac = (0, 0, . . . , 0, σ0), the
LSM describes the dynamics of g pions of mass m and
a Higgs field h = σ−σ0 with mass mh (m2h = 8λgF

2+
3m2). The Lagrangian of the LSM in terms of these fields
reads

L=
1

2
∂µπ

a∂µπa−
1

2
m2π2+

1

2
∂µh∂

µh−
1

2
m2hh

2

−κh(π2+h2)−λ(π2+h2)2 , (11)

where κ=4λ
√
gF 2+m2/4λ. The NLSM introduced in the

previous section can be obtained from this one in the limit
mh going to infinity, thus showing that the NLSM can be
understood as the low energy effective theory of the LSM.
From this Lagrangian it is possible to obtain the elastic

scattering amplitude for pions perturbatively. However, it
is much more interesting for our purposes here to consider
another kind of approach, which is the large g limit. The
pion elastic scattering amplitude for both the LSM and the
NLSM for massive pions were found in [11]. One import-
ant thing concerning this limit is that it is defined properly
only if it is taken with gF 2 fixed. Again we are interested in
the non-relativistic limit. Then the relevant low energy am-
plitude (Weinberg theorem) is in this case A = (s−m2)/
gF 2, and therefore we have the effective f2 = gF 2 fixed in
the large g limit. The averaged cross section in this limit is

σg =
11m2

128π(g2F 4)
+O(1/g) , (12)

the viscosity is

ηg =
40π3/2g2F 4

11m3/2

√
T , (13)

and finally we have

ηg

s
=
80
√
2π3

11

(g2F 4)

m4
m

T

1

nλ3
(
log g

nλ3
+ 52
) . (14)

This formula provides the value of the KSS parameter
in the non-relativistic and classic regime of a SO(g+1)/
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SO(g) NLSM in the large g limit with gF 2 fixed. As this
QFT descends from the corresponding LSM, we have found
in principle an explicit example of a non-relativistic system
coming from a renormalizable QFT that violates the KSS
bound for large enough g.
Is there a way out for the KSS conjecture? In principle,

there could be one. As we discussed above, the NLSM in-
corporates processes in which two pions produce any even
number of pions. Even if these processes are very much
suppressed at low temperatures, T �m, they are always
present. This in particular means that we cannot fix the
chemical potential at will, and consequently an arbitrary
value of µ will correspond in general to a metastable state
outside chemical equilibrium. After some time this state
will relax to the absolute stable equilibrium state µ =m.
Thus the density will no more be arbitrary, but it will be
completely determined by the temperature alone. Interest-
ingly enough, if µ=m then the condition n� g/λ3 cannot
be fulfilled, and our computation here is not valid anymore.
One can think of introducing a flavor chemical poten-

tial (associated to the electric or strange charge), conserved
by the strong interactions. These charges of course leak
through the weak interactions to electrons and muons, and
are lost to the pion gas. However, for a theoretical construc-
tion of a pure sigmamodel system, flavor is conserved.That
is, although the total number of pions varies, the relative
share between the different flavors can be maintained out of
chemical equilibrium with the appropriate chemical poten-
tials, and this is enough to violate the conjectured bound.
The conclusion is that the KSS violation that we have

found here applies only to states that are not chemically
stable but not for a genuine thermodynamic equilibrium
state, unless one can force chemical potentials associated
to flavor quantum numbers upon the system. It could be
the case that the same reasoning applies to the KSS bound
violations found in [8] by using scaling arguments. This
is because interaction terms changing the particle number
probably appear in the Lagrangian density of any interact-
ing relativistic quantum field theory satisfying the Wight-
man axioms.
However, there is no fundamental reason for the KSS

conjecture to hold in the strong sense, for example for non-
relativistic systems of complex molecules with exponen-
tially large degeneracy g, which cannot be described by the
low energy limit of a relativistic QFT. In the next section
we introduce a class of systems that could eventually pro-
vide a relevant physical example of KSS bound violation.

4 Isomeric molecules provide a large
degeneration factor

There is no obvious classical gas that can be described by
the non-linear sigma model, because the spontaneous sym-
metry breaking mechanismmay not be active (Goldstone’s
theorem does not hold in a non-relativistic quantum field
theory).
However, to overcome the KSS bound by increasing the

entropy, it is sufficient to have a multicomponent gas with

a large number of species. The only reason we invoked the
NLSM above was that we wished to write an expression for
the cross section at low energies that we could control an-
alytically in a model that can be UV completed. If we are
willing to take some uncertainty and accept an unknown
cross section as a parameter instead of (9), there should be
no problem in decreasing the KSS number below 1/(4π),
provided we can arbitrarily increase the number of compo-
nents in the gas.
To obtain a large number of particle species, monoatomic

gases are out of the question, as the count of stable iso-
topes is quite limited around the stability valley. From the
modest logarithmic growth of the mixing entropy with the
degeneracy exposed in the denominator of (9), and the typ-
ical values for a gas in Fig. 1 and other works, which are an
order of magnitude above the bound, we see that we need
no less than 20000 different species to avoid the bound.
Molecular physics offers by far the largest variety of

similar species in terms of stable isomers. A popular
molecule family that serves our purpose for a gedanken ex-
periment is that of the fullerenes. We sketch in Fig. 2 the
well-known buckminsterfullerene (a C60 truncated icosa-
hedron). Some two decades after their discovery, fuller-
enes are now copiously produced (macroscopic fractions of
a gram are usual) in the form of powder, and they have
also been studied in disolution. However, they are known
to sublimate to a fullerene vapor at a temperature of about
750K. A review of the physical properties from where one
may track older literature is [12]. The carbon atoms in
the vertices of the truncated icosahedron C60 all fall at
the surface of a sphere. Therefore, just above the subli-
mation temperature, a dilute fullerene gas must behave
as a hard-sphere gas, with very suppressed rheologic and
other properties that would blur the experimental data ob-
tained with conventional hydrocarbon or polymer chains.

Fig. 2. Buckminsterfullerene, C60. For temperatures slightly
different from the sublimation point of about 750 K, the fuller-
ene vapor provides a reasonable representation of a hard-sphere
gas
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But how does one obtain a large number of different
species? There is also a family of slightly more compli-
cated molecules, substituted fullerenes, where one or more
carbon atoms in the cage surface are replaced, such as
boron–nitrogen substituted fullerenes (one can also speak
of metallofullerenes, when a metal atom such as scandium
or lantanum is trapped inside the cage, but these are not
our focus now). Another system that could be useful is ag-
gregated fullerenes, where one of the double carbon bonds
may become simple and the extra carbon valence may be
used to hook a submolecule. We refer to all these simply
as substituted fullerenes, without regard of whether the
counting of sites refers to a given vertex or to a given side
of the fullerene.
Now, given enough substitutions, the power of combi-

natorial counting comes to our help. If, after accounting
for the symmetries of a specific substituted fullerene, there
are N possible sites (or edges) for the substitution, and
M identical substituting atoms (perhaps not counting the
first substitution), the number of different species in the
gas sums up to

g =

(
N
M

)
=

N !

M !(N −M)!
, (15)

which can be made quite large (for example, with N = 12,
M = 3, one obtains 220 isomers). In Fig. 3 we plot an ex-
ample of C60 with two substitutions. The substituted ful-
lerenes are distinguishable particles (for example by spec-
troscopic measurements of their vibrational lines) but have
essentially equal mass and a very similar scattering cross
section. Their viscosity is then essentially independent of
the number of different isomers. However, the entropy
grows logarithmically with the number of molecules and
could eventually avoid the KSS bound. It seems, however,
unlikely that the number of C60 isomers will suffice.

2

But another variable comes into play: the density. The
larger the molecular radius, the less dense that we can
pack the molecules (and also the sooner the dilute gas ap-
proximation breaks down anyway). This makes the entropy
density fall as s∝R−3, whereas the viscosity grows only as
η ∝R2. Therefore, we need an estimate of what the number
of species should be for η/s = 1/(4π). This happens, as-
suming a certain packing coefficient c defined by n= cR−3,
for cubic packing c∼ 1/8, when

g = c
λ3

R3
e
5
2

(√
πmTR
2c −1

)
. (16)

The inverse cubed radius multiplying the exponential can-
not compete with the radius in the exponent, and the same
applies to them and T dependence. From this formula it is
obvious that the number of species necessary needs to grow
exponentially with their radius, mass and temperature. To
minimize the required number of isomers, one therefore re-
quires a gas that can stay cold without condensing, made
of compact, light molecules. Helium satisfies all three con-
ditions, but fails to violate the KSS bound by a factor 8.8;
therefore, we would need some 2400

s
n |critical isomers!

2 We thank D. Son for a rough estimate indicating that this
particular gas will still fail to violate the bound.

Fig. 3. Example of doubly-substituted C60

We can further reduce (16) by assuming that the mass
of a molecule scales with the radius as a power, m ∝ R,
R2, R3 for families of molecules such as polymers, fuller-
enes and globular proteins, respectively. Furthermore, the
boiling point is also known to scale as a power (typic-
ally smaller than 1) of the mass number; see Fig. 4 for an
example.
Expressing everything in terms of the number of atoms

in the molecule, we find a typical value of

g ∝N−7/2ecN
7/6
,

since the number of possible substitutions will typically
grow as (in Stirling’s approximation)

g ∝N !� eN logN ,

Fig. 4. Boiling point for the hydrocarbon series. It can be fit
by a function of the form Tb(K) = 28N

0.56, growing with the
molecule size because of the increased polarizability
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we see that most families of substituted molecules will fail,
since they will start further from the bound than helium,
but increasing their size provides barely, if at all, enough
gain in isomer number. The candidate molecule family
needs to satisfy the four conditions of compactness, cold-
ness, lightness, and large isomer number. Helium satisfies
the first three optimally, but it fails to violate the bound by
a factor about 8.8 at its critical point, and being chemically
inert, it fails the fourth condition.

5 Discussion and outlook

On physical grounds, it has been argued before [13] that
the applicability of the Navier–Stokes equations restricts
the possible range of viscosities, and, moreover, the viscos-
ity should be larger than the entropy density up to a con-
stant factor, on the grounds of the uncertainty principle
alone. The novelty [2] is now that for a whole class of field
theories, those with a gravity dual, the factor is precisely
1/(4π). No example is known with a smaller value.
From this note, it is apparent that a physically real-

izable non-relativistic system can indeed evade this KSS
bound. We have shown this explicitly and as a matter of
principle with the non-linear sigma model, and we have
given an example of a multicomponent gas with hundreds
to thousands of isomers, composed of substituted fuller-
enes, and given the conditions that can provide a physical
violation of the bound. In the end one can argue that this,
or any other molecular gas made of stable isotopes, may be
completed by QED and QCD with the matter content e−,
u, d (and perhaps s). Since there are multiple such fluids
associated to the many scales and eigenvalues of the com-
bined Hamiltonian, the question arises as to for which of
them, or whether at all, a precisely stated KSS conjecture
would apply.
In spite of the results found here concerning the η/s

ratio at the non-relativistic classic regime of the SO(g+1)/
SO(g) NLSM in the large g limit, it is possible that the
KSS bound could be maintained in the weak sense, be-
cause of the particle production present in any consistent

QFT. However, multicomponent gases of complex carbon
molecules as the ones presented here could violate the
bound in the strong sense.
It is finally interesting to speculate on a possible meas-

urement of η/s for the hadron gas in relativistic heavy-
ion collisions. The reason is that, if the traditional ideas
of Hagedorn, implying exponential growth of the hadron
species when approaching the phase transition, also be-
ing built into the concept of Regge trajectories, would be
correct, then η/s would dramatically fall near the phase
transition. A finite measurement of η/s at RHIC, FAIR or
the LHC, when combined with (16) or a suitable general-
ization thereof, could be used as an upper bound on the
number of hadron resonances. To our knowledge this has
never been attempted.
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